Exploring residue component contributions to dynamical network models of allostery

Adam T. VanWart ¹, John Eargle ², Zaida Luthey-Schulten ², and Rommie E. Amaro

- 1 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
- 2 Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Supplemental Information

SI figure 1

The above contact map was generated over the 20 ns of production molecular dynamics. If residues were within 4.5 Å of another residue for 75% of the 40,000 frame (20 ns) trajectory, the correlation value in the correlation matrix was kept (white); conversely the correlation value would be zero (black). All calculations used this matrix when deriving optimal paths for the holo-state HisH-HisF including the optimal pathways in the convergence tables. An analogous contact map was made for the apo-state.

SI figure 2

The figure above shows the RMSD for our 30 ns molecular dynamics simulation of hisHhisF with PRFAR bound. Frames were aligned to the average structure and the RMSD was calculated relative to the first frame. The first 10 ns of dynamics were discarded and were mainly used as a cautionary measure for assurance of equilibrium since the crystal structure (1gpw chains C D) did not have PRFAR resolved. The remaining 20 ns of production dynamics were used as data for optimal pathways as well as community analysis.

SI figure 3

Depicted above is the holo-state root mean squared deviation (RMSD) for all atoms in residues HisF:Lys19 thru HisF:Glu34 and residue HisF:lle52. This RMSD is taken relative to the average structure of the entire protein and approximates the RMSF assuming equilibrium conditions. The residues were chosen since they comprise a large part of the loop structure at the C-terminal end of the $(\beta/\alpha)_8$ barrel and because they form the intersection between the members of the black community in the apo-state and the members of the black community in the holo-state (figure 7). The holo-state RMSD has a higher fluctuation and standard deviation than that of the apo-state suggesting a looser conformation and greater fluctuation for the loop. Furthermore, the ImGP moiety is a member of the holo-state black community and is seen to directly impact the black community shift from the apo-state to the holo-state.

SI figure 4 Depicted above is the apo-state root mean squared deviation (RMSD) for residues HisF:Lys19 thru HisF:Glu34 and residue HisF:lle52. This RMSD is also taken relative to the average structure of the entire protein and approximates the RMSF assuming equilibrium conditions. The residues were chosen for the same reasons explained in SI figure 3. The apo-state RMSD has a smaller fluctuation and standard deviation than that of the holo-state suggesting a tighter conformation of the loop at the C-terminal end of the $(\beta/\alpha)_8$ barrel.

ImGP-(HisH:	Glu180)								_																						
Node Method				Phe			<u>lle</u>	— Hi <u>Gl</u> y		Thr	Phe	Pro			Lys		+ His Lys	<u>Glu</u>													
Side-chain c.o.m.	< 5 > < 10 >	ImGP ImGP	50 50	49		47	73						75	74 74				180 180													
	< 15 > < 20 >	ImGP ImGP	50 50		48 48					78 78					99 99	98 98	181 181														
Residue c.o.m.	< 5 > < 10 >	ImGP ImGP	50 50					80 80	79 79						99 99		181 181	180 180													
	< 15 > < 20 >	ImGP ImGP	50 50					80 80	79 79						99 99		181	180													
alpha-carbon	< 5 >	ImGP	50	49	48	47		00	10	70		76			55		181	180													
	< 10 > < 15 >	ImGP ImGP	50 50	49 49						78 78	77	76 76						180													
Backbone	< 20 > < 5 >	ImGP ImGP	50 50	49 49						78	77 77	76 76					181 181														
c.o.m.	< 10 > < 15 >	ImGP ImGP	50 50	49 49						78 78	77 77	76					181 181														
	< 20 >	ImGP	50	49						78	77						181														
AICAR-(HisH	:Glu180)																														
Node Method	time (ns)	I ▼ AICAR	<u>Th</u> r	Ala	<u>Va</u> l	Asp	Lys	<u>Va</u> l	<u>Va</u> l	Asp	Pro	<u>Va</u> l	Cys	<u>Ala</u>	- His <u>Leu</u>		Val	Leu	Glu	Gln	<u>lle</u>	Gly	<u>Va</u> l	Thr	Phe	Pro	<u>lle</u>	Asp	Lye		—tHish Lys ⊈
Side-chain c.o.m.	< 5 > < 10 >	AICAR AICAR				11			17		32	33	9				48	47		72							75	74 74			1
	< 15 > < 20 >	AICAR AICAR											9 9				48 48							78 78					99 99		181 1 181 1
Residue	< 5 >	AICAR											9				48		46					70		76					181 1
c.o.m.	< 10 > < 15 >	AICAR AICAR		128											50							80	79						99 99	98	181 1 181 1
alpha-carbon	< 20 > < 5 >	AICAR AICAR	171	128	126								9				48	47								76			99	98	181 1 181 1
·	< 10 > < 15 >	AICAR AICAR				11									50 50	49 49								78 78	77 77	76 76					181 1 181 1
	< 20 >	AICAR													50	49								70		76					181 1
Backbone c.o.m.	< 5 > < 10 >	AICAR AICAR					19	18	17	31		33	9	8					46	72	73						75	74 74			1
	< 15 > < 20 >	AICAR AICAR													50	49								78	77						181 1
															50	49								78	77						181 1
ImGP-(HisH:	His178)														50	49								78	77						181 1
ImGP-(HisH:		I <	Leu	Phe	Val	Leu		His F <u>Gl</u> y		<u>Th</u> r	Phe	Pro	lle	Arg	50	49		l → His						78	77						181 1
		I <	<u>Leu</u> 50 50	Phe	Val 48 48	Leu				<u>Th</u> r	Phe	Pro	<u>lle</u> 7	Arg 5	50	49								78	77						181 1
Node Method Side-chain	time (ns)	ImGP ImGP ImGP ImGP	50 50 50	Phe	48 48 48	<u>Leu</u>	<u>Glu</u>			78	Phe	Pro			50 Lys	49 Tyr 138 138 138		His 178 178 178						78	77						181 1
Node Method Side-chain c.o.m.	time (ns) < 5 > < 10 > < 15 > < 20 > < 5 >	ImGP ImGP ImGP ImGP ImGP ImGP	50 50 50 50	Phe	48 48	Leu	<u>Glu</u>	Gly	<u>Va</u> l		Phe	Pro			50 Lys 99 99	Tyr 138 138 138 138		His 178 178 178 178 178						78	77						181 1
Node Method Side-chain c.o.m.	time (ns) < 5 > < 10 > < 15 > < 20 >	ImGP ImGP ImGP ImGP ImGP	50 50 50 50	Phe	48 48 48 48	<u>Leu</u>	<u>Glu</u> 46	Gly		78	Phe	Pro			50 Lys 99 99	49 Tyr 138 138 138 138		His 178 178 178 178						78	77						181 1
Node Method Side-chain c.o.m.	time (ns) < 5 > < 10 > < 15 > < 20 > < 5 > < 15 > < 20 > < 5 > < 10 > < 5 > < 10 > < 15 > < 20 >	ImGP ImGP ImGP ImGP ImGP ImGP ImGP ImGP	50 50 50 50 50 50 50 50		48 48 48 48 48 48	Leu	46 46 46 46	Gly	<u>Va</u> l	78	<u>Phe</u>	Pro			50 Lys 99 99	Tyr 138 138 138 138 138 138 138		His 178 178 178 178 178 178 178 178						78	77						181 1
Node Method Side-chain c.o.m.	time (ns) < 5 > < 10 > < 15 > < 20 > < 5 > < 10 > < 5 > < 20 > < 5 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 20 > < 10 > < 10 >	IMGP IMGP IMGP IMGP IMGP IMGP IMGP IMGP	50 50 50 50 50 50 50 50 50	49 49	48 48 48 48 48		46 46 46	Gly	<u>Va</u> l	78 78					50 Lys 99 99	Tyr 138 138 138 138 138 138	Lys	His 178 178 178 178 178 178 178 178 178						78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m.	time (ns) < 5 > < 10 > < 15 > < 20 > < 5 > < 10 > < 15 > < 210 > < 10 > < 15 > < 20 > < 15 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 > < 20 >	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50	49 49 49 49	48 48 48 48 48 48 48 48		46 46 46 46 46 46	Gly	<u>Va</u> l	78 78	Phe 77 77 77				50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138	<u>Lys</u>	His 178 178 178 178 178 178 178 178 178 178						78	77						181 1
Node Method Side-chain c.o.m.	time (ns) < 5 > < 10 > < 15 > < 20 > < 5 > < 10 > < 5 > < 10 > < 5 > < 10 > < 5 > < 10 > < 15 > < 20 > < 15 > < 10 > < 15 > < 20 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10	IMGP IMGP IMGP IMGP IMGP IMGP IMGP IMGP	50 50 50 50 50 50 50 50 50 50	49 49 49	48 48 48 48 48 48 48		46 46 46 46 46	Gly	<u>Va</u> l	78 78	77	76			50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138	<u>Lys</u>	His 178 178 178 178 178 178 178 178 178 178						78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon	time (ns) < 5 > < 10 > < 15 > < 20 > < 5 > < 10 > < 5 > < 10 > < 5 > < 10 > < 5 > < 10 > < 15 > < 20 > < 5 > < 10 > < 15 > < 20 > < 5 > < 10 > < 15 > < 20 > < 15 > < 10 > < 15 > < 20 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 15 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 > < 10 >	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50	49 49 49 49 49 49	48 48 48 48 48 48 48 48	47	46 46 46 46 46 46 46	Gly	<u>Va</u> l	78 78 78	77 77	76 76 76			50 Lys 99 99	49 Tyr 138 138 138 138 138 138 138 138 138 138	<u>Lys</u>	His 178 178 178 178 178 178 178 178 178 178						78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m.	time (ns) <5><10><15><20><15><20><55><100><15><20><55><100><155<<20><55><100<<15><20><55><100<<15><20><55><100<<15><20><55><100<<15><100<<15><100<<15><100<<10><100 1	IMGP IMGP IMGP IMGP IMGP IMGP IMGP IMGP	50 50 50 50 50 50 50 50 50 50 50	49 49 49 49 49 49	48 48 48 48 48 48 48 48		46 46 46 46 46 46 46	Gly	<u>Va</u> l	78 78 78	77 77 77	76 76 76			50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138 138 138	<u>Lys</u>	His 178 178 178 178 178 178 178 178 178 178						78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m.	time (ns) < 5> < 10> < 15> < 20> < 15> < 20> < 15> < 100 < 15> < 200 < 15> < 100 < 15> < 100 < 15> < 200 < 15> < 200 < 15> < 200 < 15> < 200 < 15> < 200 < 15> < 100 < 15> < 100 < 15> < 100 < 150 < 100 < 150 < 100 < 150 < 100 < 150 < 100 < 150 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 <	ImGP ImGP ImGP ImGP ImGP ImGP ImGP ImGP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49	48 48 48 48 48 48 48 48 48	47	46 46 46 46 46 46 46 46	80	<u>Val</u>	78 78 78 78 — H	77 77 77 77 77	76 76 76 76	7	5	50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178	Lvs		l◀			78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m. AICAR-(HisH Node Method Side-chain	time (ns) <5> <10> <15> <10> <15> <20> <5> <10> <15> <20> <5> <10> <15> <20> <5> <10> <15> <20> <5> <10> <15> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10> <15> <10 <10> <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49	48 48 48 48 48 48 48 48 48	47 47 <u>Cys</u> 9	46 46 46 46 46 46 46 46	80	<u>Val</u>	78 78 78 78 78 Val	77 77 77 77 77	76 76 76 76	7	5	50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178	Lys		<u>Tyr</u> 138		His 178	78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m.	time (ns) <5 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <10 > <15 > <10 > <10 > <15 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <1	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49	48 48 48 48 48 48 48 48 48	47 47 Cys	46 46 46 46 46 46 46 46	80	<u>Val</u>	78 78 78 78 78 Val 48 48	77 77 77 77 77	76 76 76 76	Thr 78	5	50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178	99		<u>Tyr</u> 138 138 138		His 178 178 178	78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m. AICAR-(HisH Node Method Side-chain	time (ns) <5 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <10 > <15 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <1	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49	48 48 48 48 48 48 48 48 48	47 47 Cys 9 9	46 46 46 46 46 46 46 46	80	<u>Val</u>	78 78 78 78 78 Val	77 77 77 77 77	76 76 76 76	Thr	5	50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178			<u>Tyr</u> 138 138		His 178 178	78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m. AICAR-(HisH Node Method Side-chain c.o.m.	time (ns) <5 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <20 > <5 > <10 > <15 > <20 > <5 > <10 > <15 > <20 > <5 > <10 > <15 > <20 > <5 > <10 > <15 > <20 > <5 > <10 > <15 > <20 > <15 > <10 > <15 > <20 > <15 > <10 > <15 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49 49	48 48 48 48 48 48 48 48 48 48	47 47 29 9 9 9 9	46 46 46 46 46 46 46 46	80	<u>Val</u>	78 78 78 78 78 Val 48 48	77 77 77 77 77	76 76 76 76	Thr 78	5	50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178	99 99	Asp	Tyr 138 138 138 138	Lys	His 178 178 178 178 178 178	78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m. AICAR-(HisH Node Method Side-chain c.o.m. Residue c.o.m.	time (ns) <5> <10> <15> <20> <5> <10> <15> <20> <5> <10> <15> <20 <5> <10> <15> <10> <15> <20 <5> <10 <15> <20 <5> <10 <15> <20 <5> <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <5 <10 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49	48 48 48 48 48 48 48 48 48 48	47 27 47 29 9 9 9 9 9 9	46 46 46 46 46 46 46 46 48 8	80	<u>Val</u>	78 78 78 78 78 Val 48 48 48	77 77 77 77 77	76 76 76 76 76	Thr 78	5	50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178	99 99		Tyr 138 138 138 138 138 138		His 178 178 178 178 178 178 178 178	78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m. AICAR-(HisH Node Method Side-chain c.o.m.	time (ns) <5> <10> <15> <20> <5> <10> <15> <10> <15> <20 <5> <10> <5> <10> <5> <10> <5> <10> <5> <10> <5> <10> <5> <10> <5> <10> <5> <10> <15> <20> <5> <10> <15> <20> <5> <10> <15> <20> <15 <20> <15> <10> <15 <20> <15 <20> <15 <20> <15 <20> <15 <10> <15 <10> <15 <10> <15 <10> <15 <10> <15 <10> <15 <10> <15 <10> <15 <10> <15 <10 <10 <15 <10 <15 <10 <10 <15 <10 <10 <15 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49 49	48 48 48 48 48 48 48 48 48 48	47 Cys 9 9 9 9 9	46 46 46 46 46 46 46 46 46	80 Leu	Val	78 78 78 78 78 Val 48 48 48	77 77 77 77 77	76 76 76 76 46 46	Thr 78	5	50 Lys 99 99	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178	99 99	Asp	Tyr 138 138 138 138 138 138	<u>Lys</u>	His 178 178 178 178 178 178 178 178 178 178	78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m. AICAR-(HisH Node Method Side-chain c.o.m. Residue c.o.m.	time (ns) <5 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <1	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49 49	48 48 48 48 48 48 48 48 48 48	47 Cys 9 9 9 9 9 9	46 46 46 46 46 46 46 46 48 8	80 Leu	<u>Val</u> 79 Phe	78 78 78 78 78 Val 48 48 48	77 77 77 77 Leu	76 76 76 76 46 46	Thr 78 78	Phe 77	50 Lys 99 99 Pro	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178	99 99	Asp	Tyr 138 138 138 138 138 138 138	<u>Lys</u> 181	His 178 178 178 178 178 178 178 178 178 178	78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m. AICAR-(HisH Node Method Side-chain c.o.m. Residue c.o.m. Backbone c.o.m.	time (ns) <5> <10> <15> <20> <5> <10> <15> <10> <15> <20 <15> <20 <5> <10> <15> <20 <5> <10> <15> <20 <5> <10> <15> <20 <5> <10> <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <15 <20 <20 <25 <20 <25 <25 <25 <25 <25 <25 <25	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49 49	48 48 48 48 48 48 48 48 48 48	47 47 9 9 9 9 9 9	46 46 46 46 46 46 46 48 8 8 8	80 Leu	Val	78 78 78 78 78 Val 48 48 48	77 77 77 77 Leu	76 76 76 Glu 46 46 46	Thr 78 78	Phe Phe	50 Lys 99 99 Pro	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178	99 99	Asp	Tyr 138 138 138 138 138 138 138 138	<u>Lys</u>	His 178 178 178 178 178 178 178 178 178 178	78	77						181 1
Node Method Side-chain c.o.m. Residue c.o.m. alpha-carbon Backbone c.o.m. AICAR-(HisH Node Method Side-chain c.o.m. Residue c.o.m.	time (ns) <5 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <15 > <10 > <10 > <15 > <10 > <10 > <15 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <10 > <1	ImgP ImgP ImgP ImgP ImgP ImgP ImgP ImgP	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 49 49 49 49 49	48 48 48 48 48 48 48 48 48 48	47 Cys 9 9 9 9 9 9	46 46 46 46 46 46 46 48 8 8 8	80 Leu	<u>Val</u> 79 Phe	78 78 78 78 78 Val 48 48 48	77 77 77 77 Leu	76 76 76 76 46 46	Thr 78 78	Phe 77	50 Lys 99 99 99	Tyr 138 138 138 138 138 138 138 138 138 138	181 181	His 178 178 178 178 178 178 178 178 178 178	99 99	Asp	Tyr 138 138 138 138 138 138 138	<u>Lys</u> 181	His 178 178 178 178 178 178 178 178 178 178	78	77						181 1

SI table 1

The tables above show combinations of pathways between PRFAR moieties (AICAR and ImGP) and residues in the catalytic triad (Glu180 and Hsd178). The third residue in the catalytic triad, Cys84, gave degenerate data, Cys84 coupled to Hsd178 every time, and is

not shown. Optimal pathways showed consistency over the average structures for 5, 10, 15 and 20 ns. The optimal pathway for source ImGP to sink Glu180 is assumed to have completely converged.

SI table 2

Above are the holo-state and analogous apo-state optimal pathways. The center of mass method is used for comparison across both states, and the source is omitted for the apostate since PRFAR is not present. The distance values are calculated according to eq. 4.